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Synchronized coherent charge oscillations in coupled double quantum dots
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We study coherent charge oscillations in double quantum dots tunnel coupled to metallic leads. If two such
systems are coupled by Coulomb interaction, there are, in total, six (instead of only two) oscillation modes of
the entangled system with interaction-dependent oscillation frequencies. By tuning the bias voltage, one can
engineer decoherence such that only one of the six modes, in which the charge oscillations in both double
quantum dots become synchronized in antiphase, is singled out. We suggest using waiting-time distributions and
the g(2)-correlation function to detect the common frequency and the phase locking.
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I. INTRODUCTION

Quantum coherence is the central ingredient in the de-
velopment of new quantum technologies for computation,
sensing, communication, imaging, and metrology [1]. How-
ever, coherent dynamics in a quantum device is typically
tainted by the coupling to its environment. In this paper, we
study a system constructed from two double quantum dots
[2–4] and succeed in exploiting both tunnel coupling to metal-
lic leads and the Coulomb interaction to facilitate, rather than
destroy, a clear and well-pronounced signal of synchronized
coherent charge oscillations.

A generic example of coherent charge oscillations is the
double quantum dot (DQD), in which electrons coherently
oscillate back and forth between the left and right quan-
tum dots at a specific frequency [5–9]. If two such DQDs
with initially different oscillation frequencies are capacitively
coupled [10,11] (see Fig. 1), the systems become entangled
[12–14], and instead of two different oscillation frequencies,
a total of six are found. Here, we study the electron transport
through such coupled DQDs when they are connected to left
and right metallic leads with an applied bias voltage. We
find an interesting regime in which only one out of all six
frequencies is singled out and the coherent charge oscillations
in each of the two interacting DQDs become synchronized in
antiphase. This effect is caused by the interplay of entangle-
ment induced by the Coulomb interaction and decoherence
induced by charge fluctuations into and out of the metallic
leads. In particular, a key mechanism for the synchroniza-
tion is a nonequilibrium effect in which the charging energy
supplied by the coupling of the two DQDs is utilized to tun-
nel against the natural direction of the applied bias, so that
coherent charge oscillations involving high-energy states can
effectively decohere.

*eric.kleinherbers@uni-due.de
†psteg@mit.edu

Coherent charge oscillations in both a single DQD [15–18]
and two capacitively coupled DQDs [19,20] have already been
successfully measured by pump-probe-type experiments, in
which the system is first manually excited via optical or elec-
trical pulses and then read out. Here, however, we propose
to perform a real-time measurement of the total number of
electrons in each DQD (e.g., by a capacitively coupled quan-
tum point contact [21,22] or single-electron transistor [23,24])
so that not only the average current but all single-electron
tunneling events are resolved. Coherences between the re-
spective left and right quantum dots are preserved since only
the total electron occupation of a DQD needs to be resolved
in the measurement process. The benefit of such a real-time
detection of single-electron transport is that it can be per-
formed in a steady-state situation. Nonetheless, by employing
appropriate statistical tools such as the waiting-time distribu-
tion [5,25–38] and the g(2)-correlation function [39], one can
effectively mimic a pump-probe experiment just by statistical
means of analyzing the data. In particular, with the evaluation
of waiting times between a tunneling-in event (pump) and a
tunneling-out event (probe) coherent charge oscillations can
be observed. This offers the great advantage that no special
initial state needs to be manually prepared, and information
about the quantum dynamics can still be extracted in real
time.

This paper is organized as follows. In Sec. II, we introduce
the master equation for the studied system of two coupled
DQDs connected to metallic leads. Then, in Sec. III, we
show signatures in the waiting-time distribution and the g(2)-
correlation function indicating synchronized coherent charge
oscillations with a common frequency. In Sec. IV, we in-
vestigate the isolated system of two coupled DQDs and find
that there are, in principle, six frequencies emerging from
the Coulomb interaction between the DQDs. In Sec. V, we
show that one of the six frequencies can be singled out if
the decoherence mechanism induced by the metallic leads is
suitably tuned by the bias voltage. In this case, a synchronized
coherent charge oscillation in antiphase can be observed. In
Sec. VI, we conclude our findings.
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FIG. 1. Model. The top DQD (blue) and the bottom DQD (green)
are both tunnel coupled to left and right metallic leads with tunnel-
coupling strengths �L and �R � �L, respectively. The applied bias
is μL − μR = eV . Once an electron tunnels into a DQD, it oscillates
coherently between the left and right quantum dots before it tunnels
out again. The parameters of the top and bottom DQDs are identical,
except for the tunneling amplitude �T < �B. In addition, the DQDs
are coupled via the Coulomb interaction U .

II. MODEL

The minimal model to study coherent charge oscillations in
electron transport is a serial DQD tunnel coupled to left and
right electronic leads [5–9,40,41]. In this paper, we examine
two such systems, a top DQD and a bottom DQD (see Fig. 1),
coupled by the Coulomb repulsion U and study how the co-
herent charge oscillations affect each other. The top (α = T)
and bottom (α = B) DQDs are described by the Hamiltonians

Hα = ε

2
(d†

α,Ldα,L − d†
α,Rdα,R)

− �α

2
(d†

α,Ldα,R + d†
α,Rdα,L) + W nα,Lnα,R, (1)

where the fermionic operators d†
α,β and dα,β create and an-

nihilate an electron in the quantum dot specified by (α, β ),
respectively. Here, α ∈ {T, B} labels the top and bottom
DQDs, and β ∈ {L, R} discriminates between the left and
right quantum dots. The occupation number operator is
defined as nα,β = d†

α,βdα,β . The first two terms of the Hamil-
tonian describe the detuning ε and tunneling �α between the
left and right quantum dots, respectively, whereas the last term
describes the Coulomb repulsion W within a DQD. Then, the
full Hamiltonian can be written as

H = HT + HB + UnT,LnB,L + UnT,RnB,R, (2)

where the charging energy U has to be paid only if ei-
ther both left or both right quantum dots are occupied by
an electron. For simplicity, crossed capacitive couplings are
neglected.

The DQDs are very weakly coupled to the electronic leads
via tunnel barriers such that individual electrons tunnel se-
quentially into and out of the DQDs. Then, the dynamics is

governed by the Lindblad equation

ρ̇ = Lρ = 1

ih̄
[H, ρ] +

∑
α,β,s

�β

(
Lα,β,sρL†

α,β,s

− 1

2
{L†

α,β,sLα,β,s, ρ}
)

(3)

for the density matrix ρ(t ), where the indices run over
α ∈ {T,B}, β ∈ {L,R}, and s ∈ {+,−}. We set h̄ = 1. While
tunneling between the quantum dots is treated exactly with
the Hamiltonian H , the coupling to the leads is treated
perturbatively in the tunnel-coupling strengths �L and �R.
The coupling strengths are assumed to be equal for both
DQDs, and we define �=�L+�R. Finding the Lindblad
operators that adequately describe the tunneling events into
and out of the electronic leads is a nontrivial task. In a
microscopic derivation, additional approximations are usually
required to obtain a Lindblad form [42]. When employing the
widely used secular approximation, each tunneling event into
(s = +) or out of (s = −) the quantum dot (α, β ) is described
by multiple Lindblad operators Lα,β,s(�E ), one for each
single-electron excitation energy �E . As an improvement,
we use here the so-called coherent approximation [42–44]
instead, which leads to only one Lindblad operator describing
the coherent sum Lα,β,s = ∑

�E Lα,β,s(�E ) over all excitation
energies. In particular, the Lindblad operators can be found
via Lα,β,+ = ∑

χ,χ ′
√

f (Eχ−Eχ ′−μβ )〈χ |d†
α,β |χ ′〉|χ〉〈χ ′|

and Lα,β,− = ∑
χ,χ ′

√
1− f (Eχ ′−Eχ−μβ )〈χ |dα,β |χ ′〉|χ〉〈χ ′|,

where Eχ and |χ〉 denote the eigenvalues and eigenstates
of the Hamiltonian H , respectively. The Fermi-Dirac
distribution is given by f (x) = (ex/(kBT ) + 1)−1, and the
bias window is defined by the electrochemical potentials
μL = +eV/2 and μR = −eV/2 equally for the top and
bottom DQDs. The temperature of all leads is T . The
sequential electron-tunneling regime is justified if either
temperature is sufficiently high, kBT � �, or all relevant
single-electron excitation energies �E are sufficiently far
away from the electrochemical potentials, |�E−μL/R| � �

[45]. Furthermore, we checked that renormalization effects
[46–50] (similar to the Lamb shift of the energies in atoms)
induced by the leads only quantitatively change our results
and therefore left them out of the calculations.

III. SYNCHRONIZED OSCILLATIONS

By performing a real-time measurement of the total num-
ber of electrons nα = nα,L + nα,R in either of the two DQDs,
all single-electron tunneling events can be resolved as a func-
tion of time. Such a measurement does not alter the internal
quantum dynamics of the system since [H, nα] = 0, so that
coherent charge oscillations are unaffected. A suitable sta-
tistical tool to study these coherent charge oscillations is
the waiting-time distribution wα (τ ), which describes waiting
times τ between successive tunneling-in and tunneling-out
events. It can be derived via [5]

wα (τ ) = tr(Jα,−eLα,0τJα,+ρst )

tr(Jα,+ρst )
, (4)

where we defined the jump operators according to Jα,sρ =∑
β �βLα,β,sρL†

α,β,s, describing an electron tunneling into
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(Jα,+) and out of (Jα,−) the α-DQD. Between the tunneling-
in and tunneling-out events, no other tunneling-in events are
allowed, so that the state is propagated with Lα,0 = L−Jα,−.
The stationary state ρst is defined via Lρst = 0. The waiting-
time distribution is normalized via

∫ ∞
0 dτwα (τ ) = 1.

To facilitate coherent charge oscillations, the system is
tuned such that most of the time there is only one electron in
each of the two DQDs. For this purpose, we choose eV � W ,
such that the charging energy W is too high to allow double
occupancy of a DQD. Moreover, by choosing �L � �R, one
can construct a bottleneck to ensure that the electron dwells
for long waiting times τ inside the DQD before tunneling out
again. Finally, for coherent oscillations to be seen as a clear
signature in the tunneling statistics we choose ε,�T/B ∼ � as
well as kBT � �.

Within this parameter regime, only a small modification
by a simple degeneracy factor g = 2 is necessary to describe
not only spinless but also spinful fermions (assuming double
occupancy of one quantum dot is prohibited by a large on-
site Coulomb interaction) [46]. Then, for each tunneling-in
event there are g = 2 possibilities, i.e., either a spin-up or
a spin-down electron enters the system. For a tunneling-out
event, however, there is only one possibility. Therefore, the
Lindblad operators from Eq. (3) have to be modified according
to Lα,β,+ → √

gLα,β,+. However, due to the bottleneck �L �
�R, the duration of the coherent charge oscillations is mainly
limited by the tunneling-out rate, so the factor g = 2 modify-
ing the tunneling-in rate leads to only marginal changes in the
waiting-time distribution.

In Fig. 2(a), we show the waiting-time distribution wT/B(τ )
for the top (blue) and bottom (green) DQDs for zero
Coulomb interaction U = 0 �. We observe for both DQDs
decaying oscillations with distinct, but different, frequencies.
The waiting-time distribution shows clear minima indicating
the times when the electron is most likely to be found in
the left quantum dot, so that tunneling out of the DQD is
suppressed. To extract the oscillation frequencies, we employ
the Fourier-transformed waiting-time distribution ŵα (ω) =
| ∫ ∞

0 dτe−iωτwα (τ )|, which can be written in the form

ŵα (ω) =
∣∣∣∣∣
tr[Jα,−(iω1 − Lα,0)−1Jα,+ρst]

tr(Jα,+ρst )

∣∣∣∣∣. (5)

The Fourier transform shows clear peaks at the frequen-
cies ωT =

√
�2

T + ε2 and ωB =
√

�2
B + ε2 [see the inset in

Fig. 2(a)].
By turning on the Coulomb interaction U between the

two DQDs, the subsystems become entangled [12–14]. In
Fig. 2(b), we observe that both systems show nearly identical
waiting-time distributions wT(τ ) ≈ wB(τ ) and they agree on
a common synchronization frequency ωS < ωT, ωB which is
smaller than for the individual oscillations (see the insets in
Fig. 2). Thus, a simple capacitive coupling synchronizes the
coherent charge oscillations in the individual DQDs into a
single collective mode.

We emphasize that the synchronized oscillations studied
here have to be clearly distinguished from the effect of spon-
taneous quantum synchronization [51–53], in which initially
self-sustained oscillators become synchronized. Here, the os-
cillations in the DQDs are not self-sustained but last only for

(a)

(b)

FIG. 2. Synchronization. (a) and (b) Waiting-time distributions
wT(τ ) (blue) and wB(τ ) (green) for the top and bottom DQDs,
respectively. In (a), the DQDs are decoupled (U = 0 �), so that the
detected coherent oscillations are independent of each other with
distinct, but different, frequencies. In (b), the Coulomb interaction
is U = 6 �, and the waiting-time distributions are almost identi-
cal, wT(τ ) ≈ wB(τ ); that is, the coherent charge oscillations are
synchronized. The respective insets show the Fourier-transformed
waiting-time distributions ŵT(ω) (blue) and ŵB(ω) (green), which
have clear peaks at the individual frequencies ωT and ωB in (a) and at
the common frequency ωS in (b). The frequencies are indicated with
dashed lines. The parameters are eV = 5 �, kBT = 0.2 �, ε = 0.5 �,
�T = 2 �,�B = 3 �, W = 25 �, �L = 0.95 �, and �R = 0.05 �.

finite waiting times τ , which are stochastically distributed due
to the coupling to the leads.

A. Frequency locking

In Figs. 3(a) and 3(b), we gradually increase the Coulomb
interaction U between the DQDs and show the Fourier-
transformed waiting-time distribution ŵT/B(ω) in Fig. 3(a)
for the top DQD (blue) and in Fig. 3(b) for the bottom
DQD (green). Besides the stochastic background, we see a
clear blue (green) signature at finite frequencies ω > 0 that
originates from the coherent charge oscillations in the top
(bottom) DQD. In Fig. 3(a), the oscillations in the top DQD
start at a frequency of ω = ωT ≈ 2 � for U = 0 �. Then, the
frequency shifts to smaller values with increasing Coulomb
interaction U . In contrast, the oscillations in the bottom DQD
[see Fig. 3(b)] start at a frequency of about ω = ωB ≈ 3 � for

165304-3



KLEINHERBERS, STEGMANN, AND KÖNIG PHYSICAL REVIEW B 104, 165304 (2021)

FIG. 3. Frequency and phase locking. (a) and (b) Fourier-transformed waiting-time distributions ŵT(ω) and ŵB(ω) as a function of both
frequency ω and Coulomb interaction U . In (a), the peak (blue) indicating the coherent charge oscillations of the top DQD gets gradually
shifted to smaller frequencies as the Coulomb interaction U increases. In (b), the peak (green) indicating the coherent charge oscillations in the
bottom DQD first shifts to higher frequencies before it diminishes. As the interaction increases, a new peak appears with the same frequency
as the top DQD. (c) g(2)

BT(τ )-correlation function as a function of both time τ and Coulomb interaction U , indicating temporal correlations
between a tunneling-in event in the top DQD and a tunneling-out event in the bottom DQD. The maxima at τ = 2πn/ωS with n = 0, 1, 2, . . .

(depicted in red) suggest a phase relation of π between the oscillations. In (a)–(c), the insets show cross sections for U = 0 � and U = 6 �.
The remaining parameters are the same as in Fig. 2.

U = 0 �. However, the peak gradually disappears, and a new
one is created as the interaction U increases. This new peak
describes coherent charge oscillations in the bottom DQD,
where the frequency is exactly the same as in the top DQD.
We find (see Sec. IV) that the common frequency can be
approximated for strong interactions by

ωS = �T�B

U
+ O(1/U 2). (6)

Hence, as the interaction U increases, the synchronized os-
cillations gradually slow down until they finally disappear in
the stochastic background. Note that in the transition region
from independent to collective charge oscillations (around
U ∼ eV/2), some single-electron excitation energies �E ≈
U of the system become resonant with the electrochemical po-
tential μL = eV/2, so that the condition of sequential electron
tunneling is violated at low temperatures kBT < �. Therefore,
the detailed features in the transition region visible in Fig. 3(b)
should be taken with a grain of salt.

B. Phase locking

To observe the phase relation of the oscillations between
the top and bottom DQDs, we employ the g(2)

BT(τ )-correlation
function [39] between tunneling events. It is defined as

g(2)
BT(τ ) = tr(JB,−eLτJT,+ρst )

tr(JB,−ρst )tr(JT,+ρst )
. (7)

Thus, it measures temporal correlations between a tunneling-
in event in the top DQD and a tunneling-out event in the
bottom DQD. Note that in contrast to the definition of the
waiting-time distribution in Eq. (4), here, the tunneling events
are not successive, and therefore, the propagation between
the inspected events happens with the full Liouvillian L. In
general, there is no one-to-one correspondence to the waiting-

time distribution [54]. Only for so-called renewal systems can
such a relation be established [39]. In Fig. 3(c), we show the
g(2)

BT(τ )-correlation function as a function of both time τ and
Coulomb interaction U . Note that we expressed the time vari-
able in units of the period 2π/ωS, which also depends on the
interaction U . If the Coulomb interaction is zero U = 0 �, the
systems become disentangled, and we find g(2)

BT(τ ) = 1; that
is, the statistics of the top and bottom DQDs are completely
uncorrelated [see the inset in Fig. 3(c)]. However, for finite
interaction U > 0, we see positive and negative correlations
emerging in the g(2)

BT(τ ) function, indicating that the oscil-
lations in the top and bottom DQDs are a collective mode.
In particular, the significant positive correlation (indicated in
red) for times τ = 2πn/ωS, with n = 0, 1, 2, . . ., suggests
that whenever an electron enters the top DQD, the probability
is increased that an electron tunnels out of the bottom DQD
either simultaneously or after an integer number of cycles of
the oscillation. So if the electron in the top DQD is on the left,
the electron in the bottom DQD is most likely on the right.
Thus, the observed collective charge oscillations are phase
shifted by π .

IV. FULL SET OF OSCILLATION FREQUENCIES

To develop a deeper understanding of the coherent charge
oscillations, we study the isolated system H without leads in
the local basis |ββ ′〉 := |β〉T ⊗ |β ′〉B, with β ∈ {0, L, R, D}
indicating whether the DQD is empty (0), singly occupied
with an electron in the left (L) or right (R) quantum dot,
or doubly occupied (D). The relevant states in the elec-
tronic transport are the empty state |00〉, the singly occupied
states {|0L〉 , |0R〉 , |L0〉 , |R0〉}, and the four doubly occupied
states {|LL〉 , |LR〉 , |RL〉 , |RR〉}, while the remaining seven
states are inaccessible due to the high Coulomb interac-
tion W . In the charge sectors spanned by {|0L〉 , |0R〉} and
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(b)(a)

(c) (d)

FIG. 4. (a) All six oscillation frequencies (solid lines) are shown. The common synchronization frequency ωS is depicted in red, and
the remaining frequencies are depicted in gray. The blue and green dashed lines indicate the individual oscillation frequencies ωT and ωB,
respectively, and the red dashed line shows the leading term of the synchronization frequency ωS ≈ �T�B/U for strong interactions U .
(b) Decoherence rates γψψ ′ of the coherences |ψ〉〈ψ ′| with |ψ〉 , |ψ ′〉 ∈ {|LL〉 |LR〉 , |RL〉 , |RR〉} as a function of the applied bias eV . For
eV � 2U , the coherences involving |LL〉 (blue, green, and orange) decohere fast compared to the rest. Only for high bias voltages eV � 2U
do all six coherences decohere slowly. (c) Probabilities (ρst )ψ to find the system in the state |ψ〉. For eV � 2U , the system is most likely in
either |LR〉 or |RL〉, while for eV � 2U , the system is most likely in |LL〉. The dotted vertical lines at eV = 5 � in (b) and (c) indicate the bias
voltage used in Figs. 2 and 3 to obtain the synchronized coherent charge oscillations. (d) We use eV = 20 � and find that the waiting-time
distributions wT/B(τ ) show beats and all six frequencies are visible in the Fourier transform ŵT/B(ω) (see the inset). The remaining parameters
are the same as in Fig. 2.

{|L0〉 , |R0〉}, an electron can oscillate coherently between
the left and right quantum dots at frequencies ωT and ωB,
respectively, independent of the second DQD. However, since
�L � �R, the most relevant charge sector of the Hamilto-
nian H is when the top and bottom DQDs are occupied by
one electron each. There, we can conveniently describe the
degrees of freedom using the isospin operators Iα = σ (α)/2,
where we used the Pauli matrices σ (α) = (σ (α)

x , σ (α)
y , σ (α)

z ) in
the basis {|L〉α , |R〉α}. Thus, the electron being in the left
or right quantum dot corresponds to the isospin being up
or down, respectively. We find for the subspace spanned by
{|LL〉 , |LR〉 , |RL〉 , |RR〉} the following Hamiltonian:

H̃ = (BT · IT) ⊗ 1B + 1T ⊗ (BB · IB)

+ 2UIT,z ⊗ IB,z + U

2
1T ⊗ 1B, (8)

where ⊗ denotes the tensor product. The vector Bα =
(−�α, 0, ε) takes the role of a magnetic field for the isospin
and the Coulomb repulsion U takes the role of a Ising-like
exchange interaction between the isospins. The last term
simply shifts the total energy of the system by U/2. For
noninteracting DQDs with U = 0 �, both isospins Iα precess

independently of each other around the direction defined by
Bα , which can be seen by the decoupled equations of mo-
tion İα = Bα × Iα given in the Heisenberg picture. Therefore,
there is only one allowed frequency in each DQD, which
is given by ωα = |Bα| = √

�2
α + ε2 [indicated by blue and

green dashed lines in Fig. 4(a) for the top and bottom DQDs].
However, the dynamics of the interacting system (U > 0)

is much more complex. Given the four nondegenerate
eigenenergies Eχ , with χ ∈ {1, 2, 3, 4}, of the Hamiltonian H̃ ,
one finds six distinct frequencies Eχ−Eχ ′ , with χ > χ ′ (as-
suming E1<E2<E3<E4), which can potentially influence the
coherent oscillations. In Fig. 4(a), we show all six possible fre-
quencies (solid lines) as a function of the Coulomb interaction
U , where the synchronization frequency ωS [see Fig. 3(a)] is
depicted in red and the remaining frequencies are depicted in
gray. To understand why two frequencies approach a constant
value and four increase linearly with U , we examine the limit
of strong interactions U . There, the eigenstates |χ〉 of H̃ take
a particularly simple form, namely,

|1, 2〉 ≈ |LR〉 ± |RL〉√
2

, |3〉 ≈ |RR〉, |4〉 ≈ |LL〉, (9)
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where corrections of order O(1/U ) are neglected. The eigen-
states |1〉 and |2〉 correspond to maximally entangled states;
that is, if the electron is left in one DQD, it is right in the other
DQD. The respective eigenenergies are

E1,2 ≈ −δ ∓ �B�T

2U
, E3,4 ≈ U + δ ∓ ε, (10)

where we defined δ=(�2
T+�2

B)/(4U ). Corrections of
order O(1/U 2) are neglected. Thus, in the limit of
strong interactions U , the four frequencies {E4−E1, E4−E2,

E3−E1, E3−E2} increase linearly with U , and the two fre-
quencies {E4−E3, E2−E1} become constant [see Fig. 4(a)].
Examining the respective eigenstates from Eq. (9), we find
that the four frequencies that increase linearly with U cor-
respond to unilateral charge oscillations, i.e., either |βL〉 ↔
|βR〉 or |Lβ〉 ↔ |Rβ〉, with β ∈ {L, R}. The oscillations occur
only in one DQD, while in the other DQD the electron sits
still in either the left or the right quantum dot. The other
two frequencies, approaching a constant value, correspond to
collective charge oscillations in which the electrons oscillate
either in phase, |LL〉 ↔ |RR〉, or in antiphase, |LR〉 ↔ |RL〉.

To elucidate the physics of the collective charge oscil-
lations for large interactions U , we perform a (unitary)
Schrieffer-Wolff transformation H ′ = eSH̃e−S to effectively
decouple low-energy states (|LR〉 , |RL〉) from high-energy
states (|LL〉 , |RR〉). Therefore, we artificially decompose the
Hamiltonian H̃ = H0 + V into a diagonal part H0 and an off-
diagonal perturbation V ∝ �α , where �α � U . By choosing
the anti-Hermitian generator S such that [H0, S] = V , we
find H ′ = H0 + [S,V ]/2 + O(V 3); that is, the linear order
in V has been eliminated. The remaining degrees of free-
dom of S have been chosen such that H ′ becomes block
diagonal,

H ′ = [(U+δ)1IP + BIP · IIP] ⊕ [−δ1AP + BAP · IAP] (11)

in the basis {|LL〉 , |RR〉 , |LR〉 , |RL〉}, where corrections of
order O(1/U 2) are neglected. Thus, the Hamiltonian de-
couples into a direct sum, H ′ = HIP ⊕ HAP. The effective
high-energy Hamiltonian HIP, which is linear in U , describes
in-phase oscillations (IP) in the subspace {|LL〉 , |RR〉}, while
the effective low-energy Hamiltonian HAP, which is of order
1/U , describes antiphase oscillations (AP) in the subspace
{|LR〉 , |RL〉}. Analogous to Eq. (8), the isospins are defined
via Iν = σ (ν)/2, where now the Pauli matrices are given
in the basis {|LL〉 , |RR〉} and {|LR〉 , |RL〉} for ν = IP and
ν = AP, respectively. Furthermore, the effective magnetic
fields for the isospins are given by BIP = (�T�B/U, 0, 2ε)
and BAP = (−�T�B/U, 0, 0). They give rise to collective
in-phase oscillations, İIP = BIP × IIP, with frequency ωIP =
|BIP| = 2ε + O(1/U 2) and collective antiphase oscillations,
İAP = BAP × IAP, with frequency ωAP = |BAP| = �T�B/U .
Note that the decoupled subspaces are highly entangled since
no pure state |ψ〉IP = cos(θ/2) |LL〉 + eiφ sin(θ/2) |RR〉 or
|ψ〉AP = cos(θ/2) |LR〉 + eiφ sin(θ/2) |RL〉 on the respec-
tive Bloch sphere can be written as a product state
|ψ〉T ⊗ |ψ〉B, except for the poles (θ = 0 and θ = π ).
Therefore, the entanglement arises quite naturally in the
dynamics.

We emphasize that in the nonequilibrium situation of elec-
tron transport, not only the states with the lowest energy but
all states where each DQD is either empty or singly occupied
contribute. Nonetheless, we find that for a specific bias voltage
eV , out of all six possible frequencies only one is singled
out, namely, the one describing collective antiphase oscilla-
tions (see Fig. 3) with approximate frequency ωS ≈ ωAP [red
dashed line in Fig. 4(a)].

V. ENVIRONMENT-INDUCED DECOHERENCE

To find out why only one out of six modes is visible in the
coherent charge oscillations when the DQDs are coupled to
the environment, we inspect the decoherence induced by the
leads. Other decoherence mechanisms (e.g., due to coupling
to phonons [5]) are not considered here. We define the deco-
herence rates as

γψ,ψ ′ = −Re[tr(|ψ〉〈ψ ′|†L|ψ〉〈ψ ′|)] (12)

for the six relevant coherences |ψ〉〈ψ ′| with |ψ〉 , |ψ ′〉 ∈
{|LL〉 , |LR〉 , |RL〉 , |RR〉} and ψ �= ψ ′. In Fig. 4(b), we show
them as a function of the applied bias eV .

In the regime where synchronization can be observed (dot-
ted line at eV = 5 �), we see that the decoherence rates
γLL,LR, γLL,RL, and γLL,RR (blue, green, and orange) are much
larger than the remaining decoherence rates γRR,LR, γRR,RL,
and γLR,RL (black, gray, and red). Thus, all coherences involv-
ing the high-energy state |LL〉 decohere fast, so the number of
relevant coherences is reduced from six to three. This effect
can be understood by studying the lead-induced decoherence
mechanism, which has its origin in virtual charge fluctuations
into and out of the metallic leads. Since �L � �R, this deco-
herence effect is mainly caused by the left leads. Furthermore,
since the tunneling-in event of a second electron into the DQD
is suppressed by a large Coulomb repulsion W � eV , we
have to consider only charge fluctuations where an electron
first virtually tunnels out of the system and then tunnels in
again. For the state |RR〉, such a tunneling-out event at the
left leads is trivially suppressed by the geometry of the setup.
Also for the states |LR〉 and |RL〉, the tunneling out event
into the left leads is ineffective because the electron has to
virtually tunnel against the natural direction of the applied
bias eV . Since there are no free states available well below
the left Fermi energy μL = eV/2, the necessary tunneling-out
events are strongly suppressed. In contrast, for coherences
involving the high-energy state |LL〉, the additional charging
energy U supplied by the coupling between the DQDs can
be large enough to overcome the barrier set by μL = eV/2,
and tunneling against the natural direction becomes possible.
As a rough approximation, we find the following form for the
decoherence rates [black dashed line in Fig. 4(b)]:

γLL,ψ ′ ≈ �L

[
1 − f

(
U − eV

2

)]
, (13)

where we have neglected contributions of �T,B and ε to
the excitation energies. Hence, all coherences involving the
state |LL〉 can effectively decohere if the applied bias fulfills
eV � 2U .

Although the decoherence rates γRR,LR and γRR,RL are
small, it is still unlikely to find the system in the state |RR〉.
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Therefore, also coherences involving the high-energy state
|RR〉 are of minor importance for the coherent charge os-
cillations. In Fig. 4(c), we show the probability (ρst )ψ =
〈ψ |ρst|ψ〉 to find the system in any of the configurations
|ψ〉 ∈ {|LL〉 , |LR〉 , |RL〉 , |RR〉} as a function of the applied
bias eV . For the regime where synchronization can be ob-
served (dotted line at eV = 5 �), there is a high probability
of finding the system in |LR〉 (red) or |RL〉 (orange), while
finding it in |LL〉 (green) or |RR〉 (gray) is highly unlikely.
With increasing bias eV the probability to be in |LL〉 increases
drastically because the decay mechanism described above be-
comes more and more ineffective. For the state |RR〉, however,
the probability remains small more or less independent of the
applied bias eV . This can again be explained by the geometry
of the setup since electrons tunnel into the system only from
the left side, so that a direct transition to |RR〉 from any
state with only one electron is suppressed. Thus, the dominant
coherences are expected to appear only between the states
|LR〉 and |RL〉. This finally explains why only the collective
antiphase coherent charge oscillations with frequency ωS are
visible in the electron statistics.

If, however, we increase the applied bias to eV � 2U ,
the decoherence mechanism becomes so ineffective that
the waiting-time distribution wα (τ ) shows beats [see
Fig. 4(d)]. Then, all six possible frequencies become vis-
ible in the electron transport when analyzing the Fourier-
transformed waiting-time distributions ŵα (ω) [see the inset in
Fig. 4(d)].

VI. CONCLUSIONS

We studied coherent charge oscillations in the electron
transport through two serial double quantum dots when they
are coupled to each other via Coulomb interaction. Whereas
for zero interaction the charge oscillations in the double
quantum dots are independent of each other with distinct,
but different, frequencies, we found that as the interaction
increases, the individual oscillations become synchronized
with a common frequency and a fixed phase relation of π .
Although the entangled system has potentially six frequencies
that may occur in the coherent charge oscillations, we find that
an appropriately chosen bias voltage leads to the preference
of only one frequency that is visible in the electron transport
by means of waiting-time distributions. The suppression of
all remaining frequencies is a nonequilibrium effect in which
the charging energy supplied by the Coulomb interaction
is utilized to tunnel against the natural bias direction. This
enables an effective decay of all but one oscillation mode,
where the electrons in the top and bottom double quantum
dots collectively oscillate in antiphase.
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